Applying fuzzy wavelet like operator to the numerical solution of linear fuzzy Fredholm integral equations and error analysis
نویسندگان
چکیده
In this paper, we propose a successive approximation method based on fuzzy wavelet like operator to approximate the solution of linear fuzzy Fredholm integral equations of the second kind with arbitrary kernels. We give the convergence conditions and an error estimate. Also, we investigate the numerical stability of the computed values with respect to small perturbations in the first iteration. Finally, to show the efficiency of the proposed method, we present some test problems, for which the exact solutions are known.
منابع مشابه
Applying fuzzy wavelet like operator to the numerical solution of linear fuzzy Fredholm integral equations and error analysis
In this paper, we propose a successive approximation method based on fuzzy wavelet like operator to approximate the solution of linear fuzzy Fredholm integral equations of the second kind with arbitrary kernels. We give the convergence conditions and an error estimate. Also, we investigate the numerical stability of the computed values with respect to small perturbations in the first iteration....
متن کاملNumerical solution of two-dimensional fuzzy Fredholm integral equations using collocation fuzzy wavelet like operator
In this paper, first we propose a new method to approximate the solution of two-dimensional linear fuzzy Fredholm integral equations of the second kind based on the fuzzy wavelet like operator. Then, we discuss and investigate the convergence and error analysis of the proposed method. Finally, to show the accuracy of the proposed method, we present two numerical examples.
متن کاملA computational wavelet method for numerical solution of stochastic Volterra-Fredholm integral equations
A Legendre wavelet method is presented for numerical solutions of stochastic Volterra-Fredholm integral equations. The main characteristic of the proposed method is that it reduces stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of the Legendre wavelets basis are investigated. The efficiency and accuracy of the proposed method wa...
متن کاملApplication of Fuzzy Bicubic Splines Interpolation for Solving Two-Dimensional Linear Fuzzy Fredholm Integral Equations
In this paper, firstly, we review approximation of fuzzy functions by fuzzy bicubic splines interpolation and present a new approach based on the two-dimensional fuzzy splines interpolation and iterative method to approximate the solution of two-dimensional linear fuzzy Fredholm integral equation (2DLFFIE). Also, we prove convergence analysis and numerical stability analysis ...
متن کامل